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ABSTRACT 

The effects of the use of different adaptive gird 

methods are investigated of supersonic inviscid 2-D external 

flow over two different shapes of wedge of different angle of 

attacks. For viscous flow solution, the effects of adaptations 

are invistaged for different turbulence model usage. 

Hyperbolic grid generation program built to generate the 

structured grid for 2-D viscous flow problem. For supersonic 

2-D inviscid flow, the use of r-refinement grid adaption 

algorithm is used to develop the solution of Euler PDE with 

the use of MacCormak finite different solver. Fortran 99 

program built for elliptic and hyperbolic grid generation and 

MacCormak 2-D solver which are fed to grid adaption 

program. Results showed correction , increase in accuracy , 

time saving for 2-D flows as a results of both r-refinement and 

h-refinement adaptaion algorithm implementation.  
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Nomenclature 

a Speed of sound 

C , C , C Artificial viscosity coefficient in ,  and  

direction respectively 

D Van driest damping factor 

e Specific internal energy per unit mass 

Et Total energy per unit volume 

E, F, G Column vector in Cartesian coordinate 

G,F,E 
Column vector in body fitted coordinate 

E1, E2, E3, E4 Vector 

U1, U2, U3, U4 Vector 

I Identity matrix 

Imax Number of grid points in  direction 

Jmax Number of grid points in  direction 

Kmax Number of grid points in  direction 

K Coefficient of thermal conductivity 

KT Turbulent thermal conductivity 

M Mach number 

M Mass flow rate 

P Static pressure 

p Free stream pressure 

p0 Stagnation pressure 

Pr Molecular prandtl number 

prt Turbulent prandtl number 

  

Re Reynolds's number 

Rex , Rey Reynolds's number per step size in x and y 

respectively 

 Relaxation parameter 

 Ratio of specific heat ,  = 1.4 

t Time step 

 Density 

 Denotes an increment of the variable that 

follows 

 Viscosity factor 

r Turbulent viscosity factor 

 Flow angle of attack 

x , y , z Spatial steps in physical domain 

 ,  ,  Spatial steps in computational domain 

 ,  ,  Computational coordinates 

 

1. INTRODUCTION 
In this study, the effect of flow over 2-D wedge will 

be investigated. The flow over wedge is considered as a case 

study and two dimensional, subsonic inviscid flows were 

studied. Both h-refinement and r-refinement adaption will be 

considered. Additionally, the resolution will be examined by 

changing the turbulence modeling parameter depending to the 

used mesh in the solution viscous flow problems. Previous of 

grid adaptation paper and study this case, Berger [1] presented 

a method of adaptive grid refinement for the solution of Euler 

equation for transonic external flow and studied the external 

flow over NACA 0012 aerofoil. And Eiseman [2] developed 

an alternating direction method for flow over a biconvex 
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aerofoil that adaptively resolve numerical solutions to 

physical problems by moving the points of a coordinate grid 

and illustrated his used weighting function with a parabolic 

disturbance occurring in the flow over the studied biconvex 

aerofoil. And Shen, [3] studied a depth-averaged two-

dimensional model uses the solution – adaptive grid method 

to adapt the distribution of the computational grid point based 

on the newly computed field variables during simulation. 
Borsboom [4] presented the first technique of a moving 

adaptive grid technique for any arbitrary flow and transport 

problems that is based on the approximate minimization in the 

L-1 norm of the modeling error due to discertization, he 

considered only an analytical grid with pure mathematical 

model. These numerical methods used to solve the flow over 

wedge shaped geometries. Littlefield et al, [5] described the 

implementation of an adaptive mesh refinement scheme into 

an existing two and three dimensional Eulerian hydrocode 

which solve a problem of internal supersonic flow in a square 

cross section duct. The method of adaptation is illustrated by 

the refinement of a parent cell into eight child cells. Azarenok 

and Ivanenko, [6] coupled the solution – adaptive grid 

generation procedure with the Godunov- type solver for the 

second order accuracy.The researchers studied the supersonic 

internal flow in wind tunnel having square cross section area, 

the flow faces a back-facing step which enlarges the wind 

tunnel section area. They concluded that dynamically adaptive 

grids, clustered to singularities, allow increasing accuracy of 

numerical solution. Pimental etal [7] presented the result of a 

numerical study of premixed hydrogen-air flows ignition by 

an oblique shock wave (OSW) stabilized by a wedge, in 

situation when initial and boundary conditions are such that 

transition between the initial OSW and an oblique detonation 

wave (ODW) is observed. Computation performed using an 

adaptive, unstructured grid, finite volume computer code 

previously developed for the sake of the computations of high 

speed, compressible flows of reactive gas mixtures. And 

Eman A. Salih, [8] introduced numerical solution of 

supersonic inviscid and viscous compressible fluid flow over 

a vane with different angle of attack. In the viscous flow a full 

Navier-Stock equations was solved using explicit time 

marching Mackormak predictor – corrector technique. This 

method was used to solve two-dimensional viscous flow over 

the vane. Baldwin – Lomax turbulence model was used to 

study the viscous effect. Different flow conditions were tested 

with different Mach numbers up to 7. The method revealed a 

good match with the previous works.  

2. Problem statement and governing 

equations 
The geometry of the problem consists two type of 

wedge as shown in figure (1). And a simple schematic 

diagram for boundary conditions for the problem showing in 

figure (2). The mathematical statement for this problem basic 

on the physical principles of fluid dynamics equation  

Conservation of mass, Conservation of momentum (Newton's 

second low of motion) and  Conservation of energy. The 

mathematical representation of the governing equations for an 

unsteady three dimensional, compressible, viscous flows in 

conservative form for neglected body forces are: 

Continuity equation  

0)(. 



V

t




                                                  (2.1) 

Momentum equation  

  (       )                                  (2.2) 

The considered assumptions for 2-D general flow are as 

follows, Neglected body forces, Uniform isothermal flow, 

Fully turbulent flow in boundary layer region. The fluid 

prosperities is homogenous at the initial stage. The working 

fluid is assumed as perfect gas where the equation of state is: 

     , the x and y components of the velocity vector are u 

and v respectively , so for the magnitude of total velocity 

vector, we have :        √      , The solution of the 

governing Partial differential equation PDE requires definition 

of boundary conditions that comply with those PDE, (e.g the 

no slip condition is associated with viscous flow solution). 

Furthermore, for those PDE, when approximated by finite 

different equation FDE, will require more boundary 

conditions, namely is "numerical" boundary conditions 

(defining the whole entire domain when using the time 

marching technique). The boundary conditions for 2-D 

viscous flow are far-field, downstream and upstream, and 

viscous wall boundary conditions. Those boundary conditions 

for 2-D viscous flow are shown in Fig. (2.2):  

1- Inflow boundary conditions: all the inflow properties 

are uniform and specified. 

2- Out flow boundary conditions: The Mach number,  

temperature and primitive pressure are interpolated 

from the interior points, while the density is calculated 

from the equation of state  

3- The far-filed boundary conditions: All the far-field 

properties are specified.  

4- Wall boundary condition: at the wall the no slip 

condition imply , that mean u and v are set to be zero 

at the wall. Additionally, the pressure is calculated 

from the momentum equation in the y – direction. The 

momentum equation at the wall is :  
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  But  ν is approximately zero at the wall, this yields :  
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        The governing equation expressed in vector form and 

suited for numerical application will be:  

0














y

F

x

E

t

U                   (2.2)  

For inviscid 2-D flow,    considered zero. The governing 

differential equation will become of the form of Euler 

equations. 

 

3 Numerical solution procedure 
 

The numerical procedure for subsonic 2-D and 

viscous flow, the use of h-refinement grid adaption algorithm 

is used to develop the solution of Navir-Stocks PDE that 

describes the flow field with the use of coupled control 

volume solver. Hyperbolic grid generation program built to 

generate the structured grid for 2-D inviscid flow problem. 

Then results fed to grid adaption SIERRA program (built in 

Fortran 99 language) to implement the adaption. And the 

result show by Tecplote program. The range of numerical 

program show in table 1.  

 

Table 1. Studied cases 

Type of 

wedge 

Angle of 

attack 

Mach 

Number 
Type of Grid 

Type 1 
0 , -10 , -
15 , -20 

1.5 
With adaption 

Without adaption 

2 
With adaption 

Without adaption 

3 
With adaption 

Without adaption 

4 
With adaption 

Without adaption 

Type 2 0 2 

With adaption 

Without adaption 

 

4 Verification 
The  results of adaptation implementation for 2-D 

supersonic flows will be stated for various Mach numbers and 

angles of attacks.  

Figures (3) to (6) show the non-adapted and adapted 

grid for various Mach numbers for 2-D supersonic inviscid 

flows over a wedge of type 1 before and after r-refinement 

adaption implementation.  

All these results are obtained under condition of : 

ambient temperature of 1200 K and ambient pressure of 

1.01325 bar and angle of attack 0, adaption produced a good 

reduction in computer time where the iteration number is 

decreased from 3000 to 730.  Adaptation resulted in good 

flow visualization through the resulted adapted grid and one 

can see the clustering of grid points all over the region of 

shock wave.    

Figures (7) to (9) show the non-adapted and adapted 

grid for various angles of attacks for 2-D supersonic inviscid 

flow over a wedge of type 1 before and after r-refinement 

adaption implementation. All these results are obtained under 

condition of : ambient temperature of 288.16 K and ambient 

pressure of 1.01325 bar and Mach number of 1.5, adaption 

produced a good reduction in computer time where the 

iteration number is decreased from 3000 to 850. But flow 

visualization was not good and adaptation relocated the nodes 

slightly.  

 

Figures (10) to (12) show a set of results for 2-D 

supersonic inviscid flows over a wedge of type 1. All these 

results are obtained under condition of: ambient temperature 

of 288.16 K, ambient pressure of 1.01325 bar, Mach number 

of 1.5 and angle of attack of 25. 

Figures (13) to (14) shows the pressure contours for 

inviscid flow over a wedge of type 1 and as illustrated on 

those figures , where figures (15) to (16) shows the velocity 

vectors for the stated cases. Remarkable iteration number 

reduction is recorded and more flow visualization noted.  

Figures (17) to (21) show a set of results for 2-D 

supersonic inviscid flow over a wedge of type 2. All these 

results are obtained under condition of : ambient temperature 

of 288.16 K, ambient pressure of 1.01325 bar, Mach number 

of 2 and angle of attack 0. Adaption produced a good 

reduction in computer time where the iteration number is 

decreased from 3000 to 1500. 

 

5  CONCLUSIONS 
       

 The following conclusion achieved that the Grid adaption 

showed a great increase in flow solution accuricy which is 

demonstrated in an increased range of visualized contours 

regions and new values for in between field parameters 

recorded for both subsonic and supersonic flows.  

Grid adaption was of the same effectiveness for both h-

refinement and r-refinement adaption types. Grid adaption 

was of the same effectiveness for two different studied 

wedges.  

 

Grid adaption resulted in a good reduction in computer time 

for 2-D flow problem solution.  

Grid adaption successfully visualized flow parameter 

variation which mean that we can consider the grid adaption 

as a good flow visualization method.  

There is contour regions added for all studied models after 

adaptation.  
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(b) After adaption 
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Figure (3): Mesh generation at inlet Mach no.=1.5, 

tinf=1200 K, pinf=101325 Pa, angle of attack=0, tw=1200 K. 
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(a) Before adaption 

(a) Before adaption 

(b) After adaption 

(b) After adaption 

Figure (4): Mesh generation at inlet Mach no.=2, tinf=1200 

K, pinf=101325 Pa, angle of attack=0, tw=1200 K. 
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Figure (5): Mesh generation at inlet Mach no.=3, tinf=1200 

K, pinf=101325 Pa, angle of attack=0, tw=1200 K. 
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(b) After adaption 

(b) After adaption 

(a) Before adaption 

(a) Before adaption 

Figure (6): Mesh generation at inlet Mach no.=4, tinf=1200 

K, pinf=101325 Pa, angle of attack=0, tw=1200 K . 
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Figure (7): Mesh generation at inlet Mach no.=1.5, 

tinf=288.16 K, pinf=101325 Pa, angle of attack= -10, 

tw=288.16 K . 
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Figure (8): Mesh generation at inlet Mach no.=1.5, 

tinf=288.16 K, pinf=101325 Pa, angle of attack= -15, 

tw=288.16 K . 
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Figure (9): Mesh generation at inlet Mach no.=1.5, 

tinf=288.16 K, pinf=101325 Pa, angle of attack= -20, 

tw=288.16 K . 
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(a) Before adaption, iteration no. =3000 
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(b) After adaption, iteration no. =850 

Figure (10): Mach number contours at inlet Mach no.=1.5, 

tinf=288.16 K, pinf=101325 Pa, angle of attack= -25, 

tw=288.16 K. 
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(a) Before adaption, iteration no. =3000 

(b) After adaption, iteration no. =850 

Figure (11): Pressure contours at inlet Mach no.=1.5, 

tinf=288.16 K, pinf=101325 Pa, angle of attack= -25, 

tw=288.16 K . 
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(a) Before adaption, iteration no. =3000 
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Figure (12): Density contours at inlet Mach no.=1.5, 

tinf=288.16 K, pinf=101325 Pa, angle of attack= -25, 

tw=288.16 K . 
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Figure (13): Pressure contours at inlet Mach no.=2, 

tinf=1200 K, Pinf=101325 Pa, tw=1200 K, iteration=3000  

(before adaption). 
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Figure (14): Pressure contours at inlet Mach no.=2, 

tinf=1200 K, Pinf=101325 Pa, tw=1200 K, iteration=768  

(after adaption). 

Figure (15): Velocity vectors at inlet Mach no.=2, tinf=1200 K,  

Pinf=101325 Pa, tw=1200 K, iteration=3000  

(before adaption). 
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Figure (16): Velocity vectors at inlet Mach no.=2, tinf=1200 K, 

Pinf=101325 Pa, tw=1200 K, iteration=768  

(after adaption). 
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Figure (17): Mesh generation at inlet Mach no.=2, tinf=1200 K, 

pinf=101325 Pa, angle of attack=0, tw=1200 K,  over  wedge no. 2. 

Figure (18): Adapted mesh generation at inlet Mach no.=2,  

tinf=1200 K, pinf=101325 Pa, alfa=0, tw=1200 K,   

over  wedge no. 2 
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(a) Before adaption, iteration no. =3000 

(b) After adaption, iteration no. =1500 

Figure (19): Mach contours at inlet Mach no.=2, tinf=1200 K, 

pinf=101325 Pa, angle of attack=0, tw=1200 K, over  wedge no. 2. 
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(a) Before adaption, iteration no. =3000 

(b) After adaption, iteration no. =1500 

Figure (20): Pressure contours at inlet Mach no.=2, 

tinf=1200 K, pinf=101325 Pa, angle of attack=0, tw=1200 K, 

over wedge no. 2. 
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(a) Before adaption, iteration no. =3000 

(b) After adaption, iteration no. =1500 

Figure (21): Velocity vectors at inlet Mach no.=2, tinf=1200 K, 

pinf=101325 Pa, angle of attack=0, tw=1200 K, over  wedge no. 2. 
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